Background. Resveratrol is a polyphenolic compound commonly found in the
skins of red grapes. Sirtuin 1 (SIRT1) is a human gene that is activated
by resveratrol and has been shown to promote longevity and boost
mitochondrial
The ability of the body to constantly maintain
Aims. This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone
Aims. Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of Staphylococcus aureus to invade and persist within osteoblasts. Here, we sought to determine whether the metabolic and extracellular organic matrix formation and mineralization ability of S. aureus-infected human osteoblasts can be restored after rifampicin (RMP) therapy. Methods. The human osteoblast-like Saos-2 cells infected with S. aureus EDCC 5055 strain and treated with 8 µg/ml RMP underwent osteogenic stimulation for up to 21 days. Test groups were Saos-2 cells + S. aureus and Saos-2 cells + S. aureus + 8 µg/ml RMP, and control groups were uninfected untreated Saos-2 cells and uninfected Saos-2 cells + 8 µg/ml RMP. Results. The S. aureus-infected osteoblasts showed a significant number of intracellular bacteria colonies and an unusual higher metabolic activity (p < 0.005) compared to uninfected osteoblasts. Treatment with 8 µg/ml RMP significantly eradicated intracellular bacteria and the metabolic activity was comparable to uninfected groups. The RMP-treated infected osteoblasts revealed a significantly reduced amount of mineralized extracellular matrix (ECM) at seven days osteogenesis relative to uninfected untreated osteoblasts (p = 0.007). Prolonged osteogenesis and RMP treatment at 21 days significantly improved the ECM mineralization level. Ultrastructural images of the mineralized RMP-treated infected osteoblasts revealed viable osteoblasts and densely distributed calcium crystal deposits within the extracellular organic matrix. The expression levels of prominent bone formation genes were comparable to the RMP-treated uninfected osteoblasts. Conclusion. Intracellular S. aureus infection impaired osteoblast
Healthy bone
The scoliosis observed in chickens after pinealectomy resembles that seen in humans with an adolescent idiopathic scoliosis, suggesting that melatonin deficiency may be responsible. However, to date there have been no studies of pineal gland glucose
Intervertebral disc cells exsist in a precarious nutritional environment. Local concentrations depend on both nutritional supply and demand. Little is known about the
Previous studies have described an age-dependent distortion of bone microarchitecture for α-CGRP-deficient mice (3). In addition, we observed changes in cell survival and activity of osteoblasts and osteoclasts isolated from young wildtype (WT) mice when stimulated with α-CGRP whereas loss of α-CGRP showed only little effects on bone cell
Purpose of the study. To assess the ability of magnetic resonance spectroscopy (MRS) to detect changes in spinal muscle
Introduction. Some patients complain ingrown pain or discomfort after implanting Co-Cr conventional endprosthesis of the hip. Some of this complaint may be attributable for effect on cartilage
Aim To determine if tissue
Introduction: Kashin-Beck disease (KBD) is a special endemic osteoarthropathy whose main pathologic changes occur in growth plate cartilage and articular cartilage of human limbs and joints where it is manifested as cartilage degeneration and necrosis. Past and current research suggests that KBD, and its endemic geographic distribution in China, is due to the combined presence of fungal mycotoxins (on stored food ingested by affected populations) and a regional selenium deficiency in the environment providing local food sources. Thus, we hypothesise that the presence of fungal mycotoxins and the absence of selenium in the diet specifically affects chondrocyte
Introduction: Loss of nutrient supply, seen in disc degeneration, leads to low concentrations of oxygen and glucose in the centre of the disc. Here we investigate the effect of low nutrient concentrations on the
Previously, we have demonstrated reduced biomechanical bone strength and matrix quality in Tachykinin (Tac)1-deficient mice lacking the sensory neuropeptide substance P (SP). A similar distortion of bone microarchitecture was described for α-calcitonin gene-related pepide (α-CGRP)-deficient mice. In previous studies we observed alterations in cell survival and differentiation capacity of bone cells isolated from wildtype mice when stimulated with SP and α-CGRP. We assume that changes in sensory neurotransmitter balance modulate bone cell
We have undertaken an in vivo assessment of the tissue
It was aimed to investigate the isolated effect of hydrostatic pressure on chondrocyte
In the past the prevailing view believed that there was an inverse relationship between osteoarthritis and osteoporosis; a recent study showed that elderly women with advanced osteoarthritis requiring total hip replacement had an evidence of osteoporosis and vitamin-D deficiency. An altered metabolic bone status as induced by low level of vitamin D could be one of the major causes of aseptic bone loosening and consequently failure of the implant. We studied the bone mineral
Objective: To develop and use a closed chamber to study the
Introduction: The mitochondrial Translocator Protein 18 kDa (TSPO, previously named as the peripheral benzodiazepine receptor - PBR) is involved in cellular respiration, steroidogenesis and apoptosis. In our recent study we reported on the role of the synthetic pharmacological ligands to the TSPO in enhancing human osteoblast catabolism. There is also a previous evidence of the existence of an endogenous ligands to the TSPO, but their role in the human osteoblast physiology hasn’t been verified yet. Porphyrine IX has been found having affinity to the TSPO. Therefore we hypothesize that human osteoblast
Introduction: Previous studies have demonstrated that exposure of normal bovine and human osteoarthritic cartilage to n-3 polyunsaturated fatty acids (PUFAs) such as those present in fish oils can modulate the expression and activity of the degradative and inflammatory factors that are responsible for cartilage destruction [. 1. ,. 2. ]. In these studies, supplementation of cartilage explant cultures with n-3 PUFAs resulted in an abrogation of aggrecanase activity as well as mRNA expression of mediators of inflammation. To date, few studies have examined the effect of PUFAs on the