Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 43 - 43
1 Oct 2022
Moore K Li A Gupta N Price B Delury C Laycock P Aiken S Stoodley P
Full Access

Aim

Multispecies biofilms are associated with difficult periprosthetic joint infections (PJI), particularly if they have different antibiotic sensitivities. We aimed to determine if we could generate and kill a multispecies biofilm consisting of a Gram negative and Gram positive pathogen in-vitro with antibiotic loaded calcium sulfate beads containing single or combination antibiotics.

Methods

To establish whether we could co-culture mixed species biofilms various combinations of Pseudomonas aeruginosa (PA), Enterococcus faecalis (EF), Staphylococcus aureus (SA) and Enterobacter faecalis (EF) were grown together on 316L stainless steel coupons and agar plates. Based on this screen we focused on PA + EF and challenged them with high purity calcium sulfate beads (Stimulan Rapid Cure) loaded with vancomycin (V), alone tobramycin (T) alone or vancomycin and tobramycin in combination (V+T). Bioluminescence, light imaging, plate count, confocal microscopy and scanning electron microscopy were used to quantify growth.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 63 - 63
1 Dec 2018
Dusane D Peters C Laycock P Aiken S Stoodley P
Full Access

Aim

Carbapenem-resistant Enterobacteriaceae (CRE) and vancomycin resistant Enterococci (VRE) have emerged as multi-drug resistant Gram-negative pathogens associated with Periprosthetic Joint Infections (PJI). In this study, we evaluated the efficacy of antibiotic-loaded calcium sulfate beads (ABLCB) to inhibit bacterial growth, biofilm formation and eradicate preformed biofilms of K. pneumoniae and E. faecalis.

Method

Three strains of K. pneumoniae (carbapenem resistant BAA1705, New Delhi metallo-beta-lactamase producing BAA2146 [NDM-1], a carbapenemase producing BAA2524) and a vancomycin resistant strain of E. faecalis (ATCC51299) were used. 4.8mm diameter ABLCBs (Stimulan Rapid Cure, Biocomposites) were loaded with vancomycin (VAN) & gentamicin (GEN) at 500 and 240 mg/10cc pack or VAN & rifampicin (RIF) at 1000 and 600 mg/10cc pack respectively and placed onto tryptic soy agar (TSA) plates spread with each of the four strains independently and incubated for 24 hours at 37°C. The beads were transferred daily onto fresh TSA medium spread with the test cultures. The zone of inhibition was recorded until no inhibition was observed. Biofilm prevention efficacy was investigated in 6 well plates. Bacterial cells (5×105 CFU/mL in tryptic soy broth) were treated with ABLCBs. Media was removed and challenged with bacteria daily for 7 days. CFU counts were taken after 1, 2, 3 and 7 days. For biofilm killing, ABLCB were added to 3 day formed biofilms in 6 well plates. CFU counts were estimated at 1, 3 and 7 days with daily media exchange.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 59 - 59
1 Dec 2017
Frapwell C Duignan C Webb J Aiken S Cooper J Stoodley P Howlin R
Full Access

Aim

Bacterial biofilms play a key role in prosthetic infection (PI) pathogenesis. Establishment of the biofilm phenotype confers the bacteria with significant tolerance to systemic antibiotics and the host immune system meaning thorough debridement and prosthesis removal often remain the only possible course of treatment. Protection of the prosthesis and dead-space management may be achieved through the use of antibiotic loaded cements and beads to release high concentrations of antibiotics at the surgical site. The antibacterial and antibiofilm efficacy of these materials is poorly understood in the context of mixed species models, such as are often encountered clinically.

Methods

A P. aeruginosa and S. aureus in vitro co-culture biofilm model was grown using 1/5th BHI supplemented with 20 µM hemin. The ability of beads made from a synthetic calcium sulfate (CaSO4) loaded with vancomycin, tobramycin and vancomycin & tobramycin in combination to prevent biofilm formation and kill established co-culture biofilms were assessed using viable cell counts and confocal scanning laser microscopy (CSLM) over a 7 day time course. To assay for genetic changes to the individual species as a result of their presence together within a biofilm, mutation rates were measured using fluctuation analysis following growth as planktonic and biofilm cultures, alone or in co-culture. Mutants were determined based on their ability to grow on agar plates containing an inhibitory concentration of rifampicin. Mutation rates were calculated using the Ma-Sandri-Sarkar Maximum Likelihood Estimator and 94% confidence intervals compared for significance.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 83 - 83
1 Feb 2017
Cowie R Aiken S Cooper J Jennings L
Full Access

Introduction

Calcium sulfate bone void fillers (CS-BVF) are increasingly being used for dead space management in infected arthroplasty revision surgery. The use of loose beads of CS-BVF close to the articulating surfaces of an implant means there is potential for them to migrate between the articulating surfaces acting as a third body particle. The aim of this study was to investigate the influence of CS-BVF on the third body wear of total knee replacements.

Methods

The influence of CS-BVF on wear was investigated using the commercially available CS-BVF ‘Stimulan’ (Biocomposites Ltd., UK) and posterior stabilised U2 total knee replacement system implants (United Orthopaedic Corp., Taiwan). The experimental wear simulation was performed using a six station ProSim electropneumatic knee simulator (Simulation Solutions, UK) running the Leeds intermediate kinematics input profile [1]. To investigate the damage that could be caused by the third body particles, 5cc of CS-BVF beads (excess) were placed on the tibial component of the implant, the simulator was run dry for 60 cycles before adding lubricant (25% bovine serum supplemented with 0.03% sodium azide) and running for an additional 115,000 cycles representative of the 6–8 weeks the CS-BVF are present in the body prior to their resorption. The surface topography of the cobalt chrome femorals was analysed using contacting profilometry to ascertain whether the third body particles of CS-BVF had damaged the surfaces. To investigate the influence of CS-BVF on the third body wear of the UHMWPE tibials, 3 million cycles (MC) of wear simulation was subsequently carried out. The wear of the UHMWPE tibials was assessed gravimetrically and the wear of implants tested with CS-BVF was compared to the wear against negative controls (initial Ra∼0.02µm) and positive controls (initial Ra ∼0.4µm) damaged with a diamond stylus. N=6 was completed for each condition, statistical analysis was carried out using ANOVA with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 99 - 99
1 Jan 2016
Cowie R Carbone S Aiken S Cooper J Fisher J Jennings L
Full Access

Introduction

When third body particles originating from bone cement or bone void fillers become trapped between articulating surfaces of joint replacements, contact surfaces may be damaged leading to accelerated wear and premature failure of the implant. In this study, the damage to cobalt chrome counterfaces by third body particles from PMMA bone cement (GMV, DePuy) and various bone void fillers was investigated; then wear tests of UHMWPE were carried out against these surfaces.

Methods

Third body particles of polymerised GMV bone cement and the bone void fillers; OsteoSet (with tobramycin), Stimulan and Stimulan+ (with vancomycin and tobramycin) (provided by Biocomposites Ltd.) were trapped between an UHMWPE pin and a highly polished cobalt chrome plate. A load of 120N was applied to the pin and using an Instron materials testing machine, the plate was pulled beneath the pin to recreate third body damage [1]. The resulting surface topography of the plate was analysed using white light interferometry (Bruker NPFLEX). Pin on plate wear tests of GUR 1020 UHMWPE pins were carried out against the plates perpendicular to the direction of damage for 500,000 cycles in 25% bovine serum using a 6-station multi-axial reciprocating rig under conditions to replicate the kinematics in total knee replacement. Wear of the pins was determined by gravimetric analysis and results were compared to negative (highly polished) control plates and positive controls scratched with a diamond stylus (lip height 2µm). Statistical analysis was carried out using one-way ANOVA with significance taken at p<0.05.