Systematic reviews of randomized controlled trials (RCTs) are the highest level of evidence used to inform patient care. However, it has been suggested that the quality of randomization in RCTs in orthopaedic surgery may be low. This study aims to describe the quality of randomization in trials included in systematic reviews in orthopaedic surgery. Systematic reviews of RCTs testing orthopaedic procedures published in 2022 were extracted from PubMed, Embase, and the Cochrane Library. A random sample of 100 systematic reviews was selected, and all included RCTs were retrieved. To be eligible for inclusion, systematic reviews must have tested an orthopaedic procedure as the primary intervention, included at least one study identified as a RCT, been published in 2022 in English, and included human clinical trials. The Cochrane Risk of Bias-2 Tool was used to assess random sequence generation as ‘adequate’, ‘inadequate’, or ‘no information’; we then calculated the proportion of trials in each category. We also collected data to test the association between these categories and characteristics of the RCTs and systematic reviews.Aims
Methods
The December 2024 Research Roundup360 looks at: Skeletal muscle composition, power, and mitochondrial energetics in older men and women with knee osteoarthritis; Machine-learning models to predict osteonecrosis in patients with femoral neck fractures undergoing internal fixation; Aetiology of patient dissatisfaction following primary total knee arthroplasty in the era of robotic-assisted technology; Efficacy and safety of commonly used thromboprophylaxis agents following hip and knee arthroplasty; The COVID-19 effect continues; Nickel allergy in knee arthroplasty: does self-reported sensitivity affect outcomes?; Tranexamic acid use and joint infection risk in total hip and knee arthroplasty.
As advancements in total knee arthroplasty progress at an exciting pace, two areas are of special interest, as they directly impact implant design and surgical decision making. Knee morphometry considers the three-dimensional shape of the articulating surfaces within the knee joint, and knee phenotyping provides the ability to categorize alignment into practical groupings that can be used in both clinical and research settings. This annotation discusses the details of these concepts, and the ways in which they are helping us better understand the individual subtleties of each patient’s knee. Cite this article:
Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care. Cite this article:
The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs. The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%).Aims
Methods
Aims.
Aims. This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Methods. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes.
The risk factors for recurrent instability (RI) following a primary traumatic anterior shoulder dislocation (PTASD) remain unclear. In this study, we aimed to determine the rate of RI in a large cohort of patients managed nonoperatively after PTASD and to develop a clinical prediction model. A total of 1,293 patients with PTASD managed nonoperatively were identified from a trauma database (mean age 23.3 years (15 to 35); 14.3% female). We assessed the prevalence of RI, and used multivariate regression modelling to evaluate which demographic- and injury-related factors were independently predictive for its occurrence.Aims
Methods
Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles ( Cite this article:
Aims. This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. Methods. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA),
Cemented hemiarthroplasty is an effective form of treatment for most patients with an intracapsular fracture of the hip. However, it remains unclear whether there are subgroups of patients who may benefit from the alternative operation of a modern uncemented hemiarthroplasty – the aim of this study was to investigate this issue. Knowledge about the heterogeneity of treatment effects is important for surgeons in order to target operations towards specific subgroups who would benefit the most. We used causal forest analysis to compare subgroup- and individual-level treatment effects between cemented and modern uncemented hemiarthroplasty in patients aged > 60 years with an intracapsular fracture of the hip, using data from the World Hip Trauma Evaluation 5 (WHiTE 5) multicentre randomized clinical trial. EuroQol five-dimension index scores were used to measure health-related quality of life at one, four, and 12 months postoperatively.Aims
Methods
To examine whether natural language processing (NLP) using a clinically based large language model (LLM) could be used to predict patient selection for total hip or total knee arthroplasty (THA/TKA) from routinely available free-text radiology reports. Data pre-processing and analyses were conducted according to the Artificial intelligence to Revolutionize the patient Care pathway in Hip and knEe aRthroplastY (ARCHERY) project protocol. This included use of de-identified Scottish regional clinical data of patients referred for consideration of THA/TKA, held in a secure data environment designed for artificial intelligence (AI) inference. Only preoperative radiology reports were included. NLP algorithms were based on the freely available GatorTron model, a LLM trained on over 82 billion words of de-identified clinical text. Two inference tasks were performed: assessment after model-fine tuning (50 Epochs and three cycles of k-fold cross validation), and external validation.Aims
Methods
The June 2024 Wrist & Hand Roundup360 looks at: One-year outcomes of the anatomical front and back reconstruction for scapholunate dissociation; Limited intercarpal fusion versus proximal row carpectomy in the treatment of SLAC or SNAC wrist: results after 3.5 years; Prognostic factors for clinical outcomes after arthroscopic treatment of traumatic central tears of the triangular fibrocartilage complex; The rate of nonunion in the MRI-detected occult scaphoid fracture: a multicentre cohort study; Does correction of carpal malalignment influence the union rate of scaphoid nonunion surgery?; Provision of a home-based video-assisted therapy programme in thumb carpometacarpal arthroplasty; Is replantation associated with better hand function after traumatic hand amputation than after revision amputation?; Diagnostic performance of artificial intelligence for detection of scaphoid and distal radius fractures: a systematic review.
The June 2024 Hip & Pelvis Roundup. 360. looks at:
This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate.Aims
Methods
This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis. A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.Aims
Methods
While internet search engines have been the primary information source for patients’ questions, artificial intelligence large language models like ChatGPT are trending towards becoming the new primary source. The purpose of this study was to determine if ChatGPT can answer patient questions about total hip (THA) and knee arthroplasty (TKA) with consistent accuracy, comprehensiveness, and easy readability. We posed the 20 most Google-searched questions about THA and TKA, plus ten additional postoperative questions, to ChatGPT. Each question was asked twice to evaluate for consistency in quality. Following each response, we responded with, “Please explain so it is easier to understand,” to evaluate ChatGPT’s ability to reduce response reading grade level, measured as Flesch-Kincaid Grade Level (FKGL). Five resident physicians rated the 120 responses on 1 to 5 accuracy and comprehensiveness scales. Additionally, they answered a “yes” or “no” question regarding acceptability. Mean scores were calculated for each question, and responses were deemed acceptable if ≥ four raters answered “yes.”Aims
Methods
This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.Aims
Methods