Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability.Objectives
Methods
Objectives. The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models. Materials and Methods. A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted. Results. Fracture techniques included drill hole defects (3 of 19), bone defects (3 of 19),
Objectives. Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain. Methods. A total of 16 composite tibias were implanted with an Oxford Domed Lateral
To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Bone marrow-derived, autologous MSCs were seeded on Objectives
Materials and Methods
After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing.Objectives
Methods
Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model. Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (Objectives
Methods
This study aimed to evaluate the histological and mechanical features of tendon healing in a rabbit model with second-harmonic-generation (SHG) imaging and tensile testing. A total of eight male Japanese white rabbits were used for this study. The flexor digitorum tendons in their right leg were sharply transected, and then were repaired by intratendinous stitching. At four weeks post-operatively, the rabbits were killed and the flexor digitorum tendons in both right and left legs were excised and used as specimens for tendon healing (n = 8) and control (n = 8), respectively. Each specimen was examined by SHG imaging, followed by tensile testing, and the results of the two testing modalities were assessed for correlation.Objectives
Materials and Methods
We sought to determine if a durable bilayer implant composed of trabecular metal with autologous periosteum on top would be suitable to reconstitute large osteochondral defects. This design would allow for secure implant fixation, subsequent integration and remodeling. Adult sheep were randomly assigned to one of three groups (n = 8/group): 1. trabecular metal/periosteal graft (TMPG), 2. trabecular metal (TM), 3. empty defect (ED). Cartilage and bone healing were assessed macroscopically, biochemically (type II collagen, sulfated glycosaminoglycan (sGAG) and double-stranded DNA (dsDNA) content) and histologically.Objectives
Materials and Methods
To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone. Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment.Objectives
Methods
The purpose of this study was to compare the results and complications of tibial lengthening over an intramedullary nail with treatment using the traditional Ilizarov method. In this matched case study, 16 adult patients underwent 19 tibial lengthening over nails (LON) procedures. For the matched case group, 17 patients who underwent 19 Ilizarov tibial lengthenings were retrospectively matched to the LON group.Objectives
Methods
Objectives. The aim of this experimental study on New Zealand’s white rabbits
was to investigate the transplantation of autogenous growth plate
cells in order to treat the injured growth plate. They were assessed
in terms of measurements of radiological tibial varus and histological
characteristics. . Methods. An experimental model of plate growth medial
Malpositioning of the trochanteric entry point
during the introduction of an intramedullary nail may cause iatrogenic
fracture or malreduction. Although the optimal point of insertion
in the coronal plane has been well described, positioning in the
sagittal plane is poorly defined. The paired femora from 374 cadavers were placed both in the anatomical
position and in internal rotation to neutralise femoral anteversion.
A marker was placed at the apparent apex of the greater trochanter,
and the lateral and anterior offsets from the axis of the femoral
shaft were measured on anteroposterior and lateral photographs. Greater
trochanteric morphology and trochanteric overhang were graded. The mean anterior offset of the apex of the trochanter relative
to the axis of the femoral shaft was 5.1 mm ( Placement of the entry position at the apex of the greater trochanter
in the anteroposterior view does not reliably centre an intramedullary
nail in the sagittal plane. Based on our findings, the site of insertion
should be about 5 mm posterior to the apex of the trochanter to
allow for its anterior offset. Cite this article:
The effects of disease progression and common tendinopathy treatments
on the tissue characteristics of human rotator cuff tendons have
not previously been evaluated in detail owing to a lack of suitable
sampling techniques. This study evaluated the structural characteristics
of torn human supraspinatus tendons across the full disease spectrum,
and the short-term effects of subacromial corticosteroid injections
(SCIs) and subacromial decompression (SAD) surgery on these structural
characteristics. Samples were collected inter-operatively from supraspinatus tendons
containing small, medium, large and massive full thickness tears
(n = 33). Using a novel minimally invasive biopsy technique, paired
samples were also collected from supraspinatus tendons containing
partial thickness tears either before and seven weeks after subacromial
SCI (n = 11), or before and seven weeks after SAD surgery (n = 14).
Macroscopically normal subscapularis tendons of older patients (n
= 5, mean age = 74.6 years) and supraspinatus tendons of younger
patients (n = 16, mean age = 23.3) served as controls. Ultra- and
micro-structural characteristics were assessed using atomic force
microscopy and polarised light microscopy respectively. Objectives
Methods
The treatment of chronic osteomyelitis often
includes surgical debridement and filling the resultant void with antibiotic-loaded
polymethylmethacrylate cement, bone grafts or bone substitutes.
Recently, the use of bioactive glass to treat bone defects in infections
has been reported in a limited series of patients. However, no direct comparison
between this biomaterial and antibiotic-loaded bone substitute has
been performed. In this retrospective study, we compared the safety and efficacy
of surgical debridement and local application of the bioactive glass
S53P4 in a series of 27 patients affected by chronic osteomyelitis
of the long bones (Group A) with two other series, treated respectively
with an antibiotic-loaded hydroxyapatite and calcium sulphate compound
(Group B; n = 27) or a mixture of tricalcium phosphate and an antibiotic-loaded
demineralised bone matrix (Group C; n = 22). Systemic antibiotics
were also used in all groups. After comparable periods of follow-up, the control of infection
was similar in the three groups. In particular, 25 out of 27 (92.6%)
patients of Group A, 24 out of 27 (88.9%) in Group B and 19 out
of 22 (86.3%) in Group C showed no infection recurrence at means
of 21.8 (12 to 36), 22.1 (12 to 36) and 21.5 (12 to 36) months follow-up,
respectively, while Group A showed a reduced wound complication
rate. Our results show that patients treated with a bioactive glass
without local antibiotics achieved similar eradication of infection
and less drainage than those treated with two different antibiotic-loaded
calcium-based bone substitutes. Cite this article:
The peer review process for the evaluation of
manuscripts for publication needs to be better understood by the
orthopaedic community. Improving the degree of transparency surrounding
the review process and educating orthopaedic surgeons on how to
improve their manuscripts for submission will help improve both
the review procedure and resultant feedback, with an increase in
the quality of the subsequent publications. This article seeks to clarify
the peer review process and suggest simple ways in which the quality
of submissions can be improved to maximise publication success. Cite this article:
This review briefly summarises some of the definitive
studies of articular cartilage by microscopic MRI (µMRI) that were
conducted with the highest spatial resolutions. The article has
four major sections. The first section introduces the cartilage
tissue, MRI and µMRI, and the concept of image contrast in MRI.
The second section describes the characteristic profiles of three
relaxation times (T1, T2 and T1ρ)
and self-diffusion in healthy articular cartilage. The third section
discusses several factors that can influence the visualisation of
articular cartilage and the detection of cartilage lesion by MRI
and µMRI. These factors include image resolution, image analysis
strategies, visualisation of the total tissue, topographical variations
of the tissue properties, surface fibril ambiguity, deformation
of the articular cartilage, and cartilage lesion. The final section
justifies the values of multidisciplinary imaging that correlates
MRI with other technical modalities, such as optical imaging. Rather
than an exhaustive review to capture all activities in the literature,
the studies cited in this review are merely illustrative.
Osteoarthritis (OA) is an important cause of
pain, disability and economic loss in humans, and is similarly important in
the horse. Recent knowledge on post-traumatic OA has suggested opportunities
for early intervention, but it is difficult to identify the appropriate
time of these interventions. The horse provides two useful mechanisms
to answer these questions: 1) extensive experience with clinical
OA in horses; and 2) use of a consistently predictable model of
OA that can help study early pathobiological events, define targets
for therapeutic intervention and then test these putative therapies.
This paper summarises the syndromes of clinical OA in horses including
pathogenesis, diagnosis and treatment, and details controlled studies
of various treatment options using an equine model of clinical OA.
This review is aimed at clinicians appraising
preclinical trauma studies and researchers investigating compromised bone
healing or novel treatments for fractures. It categorises the clinical
scenarios of poor healing of fractures and attempts to match them
with the appropriate animal models in the literature. We performed an extensive literature search of animal models
of long bone fracture repair/nonunion and grouped the resulting
studies according to the clinical scenario they were attempting
to reflect; we then scrutinised them for their reliability and accuracy
in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed
union, nonunion (atrophic and hypertrophic), segmental defects and
fractures at risk of impaired healing were identified. Their accuracy
in reflecting the clinical scenario ranged greatly and the reliability
of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model
when considering its application.