Osteoarthritis (OA) is a highly prevalent and disabling disease with an unmet therapeutic need. The characteristic cartilage loss and alteration of other joint structures result from a complex interaction of multiple risk factors, with mechanical overload consistently playing a central role. This overload generates an inflammatory response in the cartilage due to the activation of the innate immune response in chondrocytes, which occurs through various cellular mechanisms. Moreover, risk factors associated with obesity, being overweight, and metabolic syndrome enhance the inflammatory response both locally and systemically. OA chondrocytes, the only cells present in articular cartilage, are therefore inflamed and initiate an anabolic process in an attempt to repair the damaged tissue, which ultimately results in an aberrant and dysfunctional process. Under these circumstances, where the cartilage continues to be subjected to chronic mechanical stress, proposing a treatment that stimulates the chondrocytes’ anabolic response to restore tissue structure does not appear to be a therapeutic target with a high likelihood of success. In fact, anabolic drugs proposed for the treatment of OA have yet to demonstrate efficacy. By contrast, multiple therapeutic strategies focused on pharmacologically managing the inflammatory component, both at the joint and systemic levels, have shown promise. Therefore, prioritizing the control of chronic innate pro-inflammatory pathways presents the most viable and promising therapeutic strategy for the effective management of OA. As research continues, this approach may offer the best opportunity to alleviate the burden of this incapacitating disease. Cite this article:
Sarcopenia is an ageing-related disease featured by the loss of skeletal muscle quality and function. Advanced glycation end-products (AGEs) are a complex set of modified proteins or lipids by non-enzymatic glycosylation and oxidation. The formation of AGEs is irreversible, and they accumulate in tissues with increasing age. Currently, AGEs, as a biomarker of ageing, are viewed as a risk factor for sarcopenia. AGE accumulation could cause harmful effects in the human body such as elevated inflammation levels, enhanced oxidative stress, and targeted glycosylation of proteins inside and outside the cells. Several studies have illustrated the pathogenic role of AGEs in sarcopenia, which includes promoting skeletal muscle atrophy, impairing muscle regeneration, disrupting the normal structure of skeletal muscle extracellular matrix, and contributing to neuromuscular junction lesion and vascular disorders. This article reviews studies focused on the pathogenic role of AGEs in sarcopenia and the potential mechanisms of the detrimental effects, aiming to provide new insights into the
Our aim was to investigate occurrence of senescent cells directly in tendon tissue biopsies from patients with chronic shoulder tendinopathies, and to correlate senescence with Enhancer of zeste 2 (EZH2) expression, the functional subunit of the epigenetic master regulator polycomb repressive complex. Human proximal long head of biceps tendons from patients with different chronic shoulder pathologies (n = 22), and controls from patients with humerus fracture (n = 6) and pathology (n = 4), were histologically scored for degeneration and analyzed for gene and protein expression of tendon specific factors, senescence markers, and EZH2. Tissues were further exposed to senotherapeutic compounds and the USA Food and Drugs Administration-approved selective EZH2 inhibitor EPZ-6438 and their senescence-associated secretory phenotype (SASP) assessed.Aims
Methods
To examine how eukaryotic translation initiation factor 5A (eIF5A) regulates osteoarthritis (OA) during mechanical overload and the specific mechanism. Histological experiments used human bone samples and C57BL/6J mice knee samples. All cell experiments were performed using mice primary chondrocytes. Messenger RNA (mRNA) sequencing was performed on chondrocytes treated with 20% cyclic tensile strain for 24 hours. Western blot (WB) and quantitative polymerase chain reaction were employed to detect relevant indicators of cartilage function in chondrocytes. We created the destabilization of the medial meniscus (DMM) model and the mechanical overload-induced OA model and injected with overexpressing eIF5A adenovirus (eIF5A-ADV). Cartilage degeneration was evaluated using Safranin O/Fast Green staining. Relative protein levels were ascertained by immunohistochemistry (IHC) and immunofluorescence (IF) staining.Aims
Methods
We aimed to develop and validate a novel prediction model for osteoporosis based on serotonin, fat-soluble vitamins, and bone turnover markers to improve prediction accuracy of osteoporosis. Postmenopausal women aged 55 to 65 years were recruited and divided into three groups based on DXA (normal, osteopenia, and osteoporosis). A total of 109 participants were included in this study and split into healthy (39/109, 35.8%), osteopenia (35/109, 32.1%), and osteoporosis groups (35/109, 32.1%). Serum concentrations of serotonin, fat-soluble vitamins, and bone turnover markers of participants were measured. Stepwise discriminant analysis was performed to identify efficient predictors for osteoporosis. The prediction model was developed based on Bayes and Fisher’s discriminant functions, and validated via leave-one-out cross-validation. Normal and empirical volume under the receiver operating characteristic (ROC) surface (VUS) tests were used to evaluate predictive effects of variables in the prediction model.Aims
Methods
Frozen shoulder is a common and debilitating condition characterized by pain and restricted movement at the glenohumeral joint. Various treatment methods have been explored to alleviate symptoms, with suprascapular nerve block (SSNB) emerging as a promising intervention. This meta-analysis aimed to assess the effectiveness of SSNB in treating frozen shoulder. The study protocol was registered with PROSPERO (CRD42023475851). We searched the MEDLINE, Embase, and Cochrane Library databases in November 2023. Randomized controlled trials (RCTs) comparing SSNB against other interventions were included. The primary outcome was any functional patient-reported outcome measure. Secondary outcomes were the visual analogue scale (VAS) for pain, range of motion (ROM), and complications. Risk of bias was assessed using the Cochrane risk of bias v. 2.0 tool.Aims
Methods
Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application. In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.Aims
Methods
Pain is the most frequent complaint associated with osteonecrosis of the femoral head (ONFH), but the factors contributing to such pain are poorly understood. This study explored diverse demographic, clinical, radiological, psychological, and neurophysiological factors for their potential contribution to pain in patients with ONFH. This cross-sectional study was carried out according to the “STrengthening the Reporting of OBservational studies in Epidemiology” statement. Data on 19 variables were collected at a single timepoint from 250 patients with ONFH who were treated at our medical centre between July and December 2023 using validated instruments or, in the case of hip pain, a numerical rating scale. Factors associated with pain severity were identified using hierarchical multifactor linear regression.Aims
Methods
Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry.Aims
Methods
The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the antimicrobial properties of exogenous copper in human SF against We performed in vitro growth and viability assays to determine the capability of Aims
Methods
This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated. Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA).Aims
Methods
This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.Aims
Methods
A variety of surgical methods and strategies have been demonstrated for Andersson lesion (AL) therapy. In 2011, we proposed and identified the feasibility of stabilizing the spine without curettaging the vertebral or discovertebral lesion to cure non-kyphotic AL. Additionally, due to the excellent reunion ability of ankylosing spondylitis, we further came up with minimally invasive spinal surgery (MIS) to avoid the need for both bone graft and lesion curettage in AL surgery. However, there is a paucity of research into the comparison between open spinal fusion (OSF) and early MIS in the treatment of AL. The purpose of this study was to investigate and compare the clinical outcomes and radiological evaluation of our early MIS approach and OSF for AL. A total of 39 patients diagnosed with AL who underwent surgery from January 2004 to December 2022 were retrospectively screened for eligibility. Patients with AL were divided into an MIS group and an OSF group. The primary outcomes were union of the lesion on radiograph and CT, as well as the visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores immediately after surgery, and at the follow-up (mean 29 months (standard error (SE) 9)). The secondary outcomes were total blood loss during surgery, operating time, and improvement in the radiological parameters: global and local kyphosis, sagittal vertical axis, sagittal alignment, and chin-brow vertical angle immediately after surgery and at the follow-up.Aims
Methods
To explore key stakeholder views around feasibility and acceptability of trials seeking to prevent post-traumatic osteoarthritis (PTOA) following knee injury, and provide guidance for next steps in PTOA trial design. Healthcare professionals, clinicians, and/or researchers (HCP/Rs) were surveyed, and the data were presented at a congress workshop. A second and related survey was then developed for people with joint damage caused by knee injury and/or osteoarthritis (PJDs), who were approached by a UK Charity newsletter or Oxford involvement registry. Anonymized data were collected and analyzed in Qualtrics.Aims
Methods
This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.Aims
Methods
The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database.Aims
Methods
The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice. Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro.Aims
Methods
In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method. We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.Aims
Methods
Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.Aims
Methods