Aims. This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients. Methods. A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry. Results. COMP protein levels were significantly elevated in serum and synovial fluid of knee OA patients, especially those in the advanced stages of the disease. Serum COMP was significantly correlated with radiological severity as well as measures of body composition, physical performance, knee pain, and disability. Receiver operating characteristic curve analysis unveiled a diagnostic value of serum COMP as a
Aims. Bacterial infection activates neutrophils to release neutrophil extracellular traps (NETs) in bacterial biofilms of periprosthetic joint infections (PJIs). The aim of this study was to evaluate the increase in NET activation and release (NETosis) and haemostasis markers in the plasma of patients with PJI, to evaluate whether such plasma induces the activation of neutrophils, to ascertain whether increased NETosis is also mediated by reduced DNaseI activity, to explore novel therapeutic interventions for NETosis in PJI in vitro, and to evaluate the potential diagnostic use of these markers. Methods. We prospectively recruited 107 patients in the preoperative period of prosthetic surgery, 71 with a suspicion of PJI and 36 who underwent arthroplasty for non-septic indications as controls, and obtained citrated plasma. PJI was confirmed in 50 patients. We measured NET markers, inflammation markers, DNaseI activity, haemostatic markers, and the thrombin generation test (TGT). We analyzed the ability of plasma from confirmed PJI and controls to induce NETosis and to degrade in vitro-generated NETs, and explored the therapeutic restoration of the impairment to degrade NETs of PJI plasma with recombinant human DNaseI. Finally, we assessed the contribution of these markers to the diagnosis of PJI. Results. Patients with confirmed PJI had significantly increased levels of NET markers (cfDNA (p < 0.001), calprotectin (p < 0.001), and neutrophil elastase (p = 0.022)) and inflammation markers (IL-6; p < 0.001) in plasma. Moreover, the plasma of patients with PJI induced significantly more neutrophil activation than the plasma of the controls (p < 0.001) independently of tumour necrosis factor alpha. Patients with PJI also had a reduced DNaseI activity in plasma (p < 0.001), leading to a significantly impaired degradation of NETs (p < 0.001). This could be therapeutically restored with recombinant human DNaseI to the level in the controls. We developed a model to improve the diagnosis of PJI with cfDNA, calprotectin, and the start tail of TGT as predictors, though cfDNA alone achieved a good prediction and is simpler to measure. Conclusion. We confirmed that patients with PJI have an increased level of NETosis in plasma. Their plasma both induced NET release and had an impaired ability to degrade NETs mediated by a reduced DNaseI activity. This can be therapeutically restored in vitro with the approved Dornase alfa, Pulmozyme, which may allow novel methods of treatment. A combination of NETs and haemostatic
Objectives. The diagnosis of periprosthetic joint infection (PJI) is difficult and requires a battery of tests and clinical findings. The purpose of this review is to summarize all current evidence for common and new serum
Objectives. Prosthetic joint infection (PJI) diagnosis is a major challenge in orthopaedics, and no reliable parameters have been established for accurate, preoperative predictions in the differential diagnosis of aseptic loosening or PJI. This study surveyed factors in synovial fluid (SF) for improving PJI diagnosis. Methods. We enrolled 48 patients (including 39 PJI and nine aseptic loosening cases) who required knee/hip revision surgery between January 2016 and December 2017. The PJI diagnosis was established according to the Musculoskeletal Infection Society (MSIS) criteria. SF was used to survey factors by protein array and enzyme-linked immunosorbent assay to compare protein expression patterns in SF among three groups (aseptic loosening and first- and second-stage surgery). We compared routine clinical test data, such as C-reactive protein level and leucocyte number, with potential
Aims. The aim of this study was to further evaluate the accuracy of ten promising synovial
Aims. To analyze the potential role of synovial fluid peptidase activity as a measure of disease burden and predictive
Aims. Prosthetic joint infection (PJI) remains a major clinical challenge. Neutrophil CD64 index, Fc-gamma receptor 1 (FcγR1), plays an important role in mediating inflammation of bacterial infections and therefore could be a valuable
Aims. Metabolic profiling is a top-down method of analysis looking at metabolites, which are the intermediate or end products of various cellular pathways. Our primary objective was to perform a systematic review of the published literature to identify metabolites in human synovial fluid (HSF), which have been categorized by metabolic profiling techniques. A secondary objective was to identify any metabolites that may represent potential
Aims. Better prediction of outcome after total hip arthroplasty (THA) is warranted. Systemic inflammation and central neuroinflammation are possibly involved in progression of osteoarthritis and pain. We explored whether inflammatory
Aims. The diagnosis of periprosthetic joint infection (PJI) has always been challenging. Recently, D-dimer has become a promising
Aims. Osteoporosis is common in total hip arthroplasty (THA) patients. It plays a substantial factor in the surgery’s outcome, and previous studies have revealed that pharmacological treatment for osteoporosis influences implant survival rate. The purpose of this study was to examine the prevalence of and treatment rates for osteoporosis prior to THA, and to explore differences in osteoporosis-related
Aims. This study aimed to explore the diagnostic value of synovial fluid neutrophil extracellular traps (SF-NETs) in periprosthetic joint infection (PJI) diagnosis, and compare it with that of microbial culture, serum ESR and CRP, synovial white blood cell (WBC) count, and polymorphonuclear neutrophil percentage (PMN%). Methods. In a single health centre, patients with suspected PJI were enrolled from January 2013 to December 2021. The inclusion criteria were: 1) patients who were suspected to have PJI; 2) patients with complete medical records; and 3) patients from whom sufficient synovial fluid was obtained for microbial culture and NET test. Patients who received revision surgeries due to aseptic failure (AF) were selected as controls. Synovial fluid was collected for microbial culture and SF-WBC, SF-PNM%, and SF-NET detection. The receiver operating characteristic curve (ROC) of synovial NET, WBC, PMN%, and area under the curve (AUC) were obtained; the diagnostic efficacies of these diagnostic indexes were calculated and compared. Results. The levels of SF-NETs in the PJI group were significantly higher than those of the AF group. The AUC of SF-NET was 0.971 (95% confidence interval (CI) 0.903 to 0.996), the sensitivity was 93.48% (95% CI 82.10% to 98.63%), the specificity was 96.43% (95% CI 81.65% to 99.91%), the accuracy was 94.60% (95% CI 86.73% to 98.50%), the positive predictive value was 97.73%, and the negative predictive value was 90%. Further analysis showed that SF-NET could improve the diagnosis of culture-negative PJI, patients with PJI who received antibiotic treatment preoperatively, and fungal PJI. Conclusion. SF-NET is a novel and ideal synovial fluid
Aims. Accurate diagnosis of chronic periprosthetic joint infection (PJI) presents a significant challenge for hip surgeons. Preoperative diagnosis is not always easy to establish, making the intraoperative decision-making process crucial in deciding between one- and two-stage revision total hip arthroplasty (THA). Calprotectin is a promising point-of-care novel
Aims. This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential
Aims. Serum inflammatory parameters are widely used to aid in diagnosing a periprosthetic joint infection (PJI). Due to their limited performances in the literature, novel and more accurate
Aims. This study aimed, through bioinformatics analysis, to identify the potential diagnostic markers of osteoarthritis, and analyze the role of immune infiltration in synovial tissue. Methods. The gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified by R software. Functional enrichment analyses were performed and protein-protein interaction networks (PPI) were constructed. Then the hub genes were screened. Biomarkers with high value for the diagnosis of early osteoarthritis (OA) were validated by GEO datasets. Finally, the CIBERSORT algorithm was used to evaluate the immune infiltration between early-stage OA and end-stage OA, and the correlation between the diagnostic marker and infiltrating immune cells was analyzed. Results. A total of 88 DEGs were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that DEGs were significantly enriched in leucocyte migration and interleukin (IL)-17 signalling pathways. Disease ontology (DO) indicated that DEGs were mostly enriched in rheumatoid arthritis. Six hub genes including FosB proto-oncogene, AP-1 transcription factor subunit (FOSB); C-X-C motif chemokine ligand 2 (CXCL2); CXCL8; IL-6; Jun proto-oncogene, AP-1 transcription factor subunit (JUN); and Activating transcription factor 3 (ATF3) were identified and verified by GEO datasets. ATF3 (area under the curve = 0.975) turned out to be a potential
Aims. The diagnosis of periprosthetic joint infection (PJI) continues to present a significant clinical challenge. New
Aims. The preoperative diagnosis of periprosthetic joint infection (PJI) remains a challenge due to a lack of
The aim of this study was to evaluate the diagnostic accuracy of the absolute synovial polymorphonuclear neutrophil cell (PMN) count for the diagnosis or exclusion of periprosthetic joint infection (PJI) after total hip (THA) or knee arthroplasty (TKA). In this retrospective cohort study, 147 consecutive patients with acute or chronic complaints following THA and TKA were included. Diagnosis of PJI was established based on the 2018 International Consensus Meeting criteria. A total of 39 patients diagnosed with PJI (32 chronic and seven acute) and 108 patients with aseptic complications were surgically revised.Aims
Methods
Aims. Cell-free DNA (cfDNA) and circulating tumour DNA (ctDNA) are used for prognostication and monitoring in patients with carcinomas, but their utility is unclear in sarcomas. The objectives of this pilot study were to explore the prognostic significance of cfDNA and investigate whether tumour-specific alterations can be detected in the circulation of sarcoma patients. Methods. Matched tumour and blood were collected from 64 sarcoma patients (n = 70 samples) prior to resection of the primary tumour (n = 57) or disease recurrence (n = 7). DNA was isolated from plasma, quantified, and analyzed for cfDNA. A subset of cases (n = 6) underwent whole exome sequencing to identify tumour-specific alterations used to detect ctDNA using digital droplet polymerase chain reaction (ddPCR). Results. Cell-free was present in 69 of 70 samples above 0.5 ng/ml. Improved disease-free survival was found for patients with lower cfDNA levels (90% vs 48% at one-year for ≤ 6 ng/ml and > 6 ng/ml, respectively; p = 0.005). Digital droplet PCR was performed as a pilot study and mutant alleles were detectable at 0.5% to 2.5% of the wild type genome, and at a level of 0.25 ng tumour DNA. Tumour-specific alterations (ctDNA) were found in five of six cases. Conclusion. This work demonstrates the feasibility and potential utility of cfDNA and ctDNA as
Calprotectin (CLP) is produced in neutrophils and monocytes and released into body fluids as a result of inflammation or infection. The aim of this study was to evaluate the utility of blood and synovial CLP in the diagnosis of chronic periprosthetic joint infection (PJI). Blood and synovial fluid samples were collected prospectively from 195 patients undergoing primary or revision hip and knee arthroplasty. Patients were divided into five groups: 1) primary total hip and knee arthroplasty performed due to idiopathic osteoarthritis (OA; n = 60); 2) revision hip and knee arthroplasty performed due to aseptic failure of the implant (AR-TJR; n = 40); 3) patients with a confirmed diagnosis of chronic PJI awaiting surgery (n = 45); 4) patients who have finished the first stage of the PJI treatment with the use of cemented spacer and were qualified for replantation procedure (SR-TJR; n = 25), and 5) patients with rheumatoid arthritis undergoing primary total hip and knee arthroplasty (RA; n = 25). CLP concentrations were measured quantitatively in the blood and synovial fluid using an immunoturbidimetric assay. Additionally, blood and synovial CRP, blood interleukin-6 (IL-6), and ESR were measured, and a leucocyte esterase (LE) strip test was performed.Aims
Methods
The aim of this study was to evaluate the diagnostic value of preoperative serum CRP, white blood cell count (WBC), percentage of neutrophils (%N), and neutrophil to lymphocyte ratio (NLR) when using the fracture-related infection (FRI) consensus definition. A cohort of 106 patients having surgery for suspected septic nonunion after failed fracture fixation were studied. Blood samples were collected preoperatively, and the concentration of serum CRP, WBC, and differential cell count were analyzed. The areas under the curve (AUCs) of diagnostic tests were compared using the z-test. Regression trees were constructed and internally cross-validated to derive a simple diagnostic decision tree.Aims
Methods
The aims of this study were to increase the diagnostic accuracy
of the analysis of synovial fluid in the differentiation of prosthetic
joint infection (PJI) by the addition of inexpensive biomarkers
such as the levels of C-reactive protein (CRP), adenosine deaminase
(ADA), alpha-2-macrogloblulin (α2M) and procalcitonin. Between January 2013 and December 2015, synovial fluid and removed
implants were requested from 143 revision total joint arthroplasties.
A total of 55 patients met inclusion criteria of the receipt of
sufficient synovial fluid, tissue samples and removed implants for
analysis. The diagnosis of PJI followed the definition from a recent International
Consensus Meeting to create two groups of patients; septic and aseptic.
Using receiver operating characteristic curves we determined the
cutoff values and diagnostic accuracy for each marker.Aims
Patients and Methods
To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment. Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue.Aims
Methods
Periprosthetic joint infection (PJI) remains an extremely challenging complication. We have focused on this issue more over the last decade than previously, but there are still many unanswered questions. We now have a workable definition that everyone should align to, but we need to continue to focus on identifying the organisms involved. Surgical strategies are evolving and care is becoming more patient-centred. There are some good studies under way. There are, however, still numerous problems to resolve, and the challenge of PJI remains a major one for the orthopaedic community. This annotation provides some up-to-date thoughts about where we are, and the way forward. There is still scope for plenty of research in this area. Cite this article:
We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism. Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell’s concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature.Aims
Methods
Aims. The lack of disease-modifying treatments for osteoarthritis (OA) is linked to a shortage of suitable
Aims. This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue
Aims. Current diagnostic tools are not always able to effectively identify periprosthetic joint infections (PJIs). Recent studies suggest that circulating microRNAs (miRNAs) undergo changes under pathological conditions such as infection. The aim of this study was to analyze miRNA expression in hip arthroplasty PJI patients. Methods. This was a prospective pilot study, including 24 patients divided into three groups, with eight patients each undergoing revision of their hip arthroplasty due to aseptic reasons, and low- and high-grade PJI, respectively. The number of intraoperative samples and the incidence of positive cultures were recorded for each patient. Additionally, venous blood samples and periarticular tissue samples were collected from each patient to determine miRNA expressions between the groups. MiRNA screening was performed by small RNA-sequencing using the miRNA next generation sequencing (NGS) discovery (miND) pipeline. Results. Overall, several miRNAs in plasma and tissue were identified to be progressively deregulated according to ongoing PJI. When comparing the plasma samples, patients with a high-grade infection showed significantly higher expression levels for hsa-miR-21-3p, hsa-miR-1290, and hsa-miR-4488, and lower expression levels for hsa-miR-130a-3p and hsa-miR-451a compared to the aseptic group. Furthermore, the high-grade group showed a significantly higher regulated expression level of hsa-miR-1260a and lower expression levels for hsa-miR-26a-5p, hsa-miR-26b-5p, hsa-miR-148b-5p, hsa-miR-301a-3p, hsa-miR-451a, and hsa-miR-454-3p compared to the low-grade group. No significant differences were found between the low-grade and aseptic groups. When comparing the tissue samples, the high-grade group showed significantly higher expression levels for 23 different miRNAs and lower expression levels for hsa-miR-2110 and hsa-miR-3200-3p compared to the aseptic group. No significant differences were found in miRNA expression between the high- and low-grade groups, as well as between the low-grade and aseptic groups. Conclusion. With this prospective pilot study, we were able to identify a circulating miRNA signature correlating with high-grade PJI compared to aseptic patients undergoing hip arthroplasty revision. Our data contribute to establishing miRNA signatures as potential novel diagnostic and prognostic
Aims. Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Pad4-/- mice that display defects in peptidyl arginine deiminase 4 (PAD4), an essential protein required for NETs) or resolution (via DNase 1 treatment, an enzyme that degrades the cytotoxic DNA matrix) of NETs can prevent osseointegration failure and formation of peri-implant fibrotic tissue. Methods. Patient peri-implant fibrotic tissue was analyzed for NETs
Aims. CRP is an acute-phase protein that is used as a
The December 2022 Foot & Ankle Roundup. 360. looks at: Evans calcaneal osteotomy and multiplanar correction in flat foot deformity; Inflammatory
Aims. This study aimed to explore whether serum combined with synovial interleukin-6 (IL-6) measurement can improve the accuracy of prosthetic joint infection (PJI) diagnosis, and to establish the cut-off values of IL-6 in serum and synovial fluid in detecting chronic PJI. Methods. Patients scheduled to have a revision surgery for indications of chronic infection of knee and hip arthroplasties or aseptic loosening of an implant were prospectively screened before being enrolled into this study. The Musculoskeletal Infection Society (MSIS) definition of PJI was used for the classification of cases as aseptic or infected. Serum CRP, ESR, IL-6, and percentage of polymorphonuclear neutrophils (PMN%) and IL-6 in synovial fluid were analyzed. Statistical tests were performed to compare these
Aims . Recently, several synovial
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic
Aims. Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Methods. Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq). Results. Radiographs and histology demonstrated impaired fracture healing in ZDF rats with incomplete bony bridge formation and an influx of intramedullary inflammatory tissue. In comparison, near-complete bridging between cortices was observed in Sham WT animals. Of 13,160 genes, mRNA-Seq analysis identified 13 that were differentially expressed in ZDF rat callus, using a false discovery rate (FDR) threshold of 10%. Seven genes were upregulated with high confidence (FDR = 0.05) in ZDF fracture callus, most with known roles in inflammation. Conclusion. These findings suggest that elevated or prolonged inflammation contributes to delayed fracture healing in T2DM. The identified genes may be used as
Aims. The diagnosis of joint infections is an inexact science using combinations of blood inflammatory markers and microscopy, culture, and sensitivity of synovial fluid (SF). There is potential for small molecule metabolites in infected SF to act as infection markers that could improve accuracy and speed of detection. The objective of this study was to use nuclear magnetic resonance (NMR) spectroscopy to identify small molecule differences between infected and noninfected human SF. Methods. In all, 16 SF samples (eight infected native and prosthetic joints plus eight noninfected joints requiring arthroplasty for end-stage osteoarthritis) were collected from patients. NMR spectroscopy was used to analyze the metabolites present in each sample. Principal component analysis and univariate statistical analysis were undertaken to investigate metabolic differences between the two groups. Results. A total of 16 metabolites were found in significantly different concentrations between the groups. Three were in higher relative concentrations (lipids, cholesterol, and N-acetylated molecules) and 13 in lower relative concentrations in the infected group (citrate, glycine, glycosaminoglycans, creatinine, histidine, lysine, formate, glucose, proline, valine, dimethylsulfone, mannose, and glutamine). Conclusion. Metabolites found in significantly greater concentrations in the infected cohort are markers of inflammation and infection. They play a role in lipid metabolism and the inflammatory response. Those found in significantly reduced concentrations were involved in carbohydrate metabolism, nucleoside metabolism, the glutamate metabolic pathway, increased oxidative stress in the diseased state, and reduced articular cartilage breakdown. This is the first study to demonstrate differences in the metabolic profile of infected and noninfected human SF, using a noninfected matched cohort, and may represent putative
Aims. The aim of the HIPGEN consortium is to develop the first cell therapy product for hip fracture patients using PLacental-eXpanded (PLX-PAD) stromal cells. Methods. HIPGEN is a multicentre, multinational, randomized, double-blind, placebo-controlled trial. A total of 240 patients aged 60 to 90 years with low-energy femoral neck fractures (FNF) will be allocated to two arms and receive an intramuscular injection of either 150 × 10. 6. PLX-PAD cells or placebo into the medial gluteal muscle after direct lateral implantation of total or hemi hip arthroplasty. Patients will be followed for two years. The primary endpoint is the Short Physical Performance Battery (SPPB) at week 26. Secondary and exploratory endpoints include morphological parameters (lean body mass), functional parameters (abduction and handgrip strength, symmetry in gait, weightbearing), all-cause mortality rate and patient-reported outcome measures (Lower Limb Measure, EuroQol five-dimension questionnaire). Immunological
Aims. The purpose of this study was to examine the efficacy and safety of carbazochrome sodium sulfonate (CSS) combined with tranexamic acid (TXA) on blood loss and inflammatory responses after primary total hip arthroplasty (THA), and to investigate the influence of different administration methods of CSS on perioperative blood loss during THA. Methods. This study is a randomized controlled trial involving 200 patients undergoing primary unilateral THA. A total of 200 patients treated with intravenous TXA were randomly assigned to group A (combined intravenous and topical CSS), group B (topical CSS), group C (intravenous CSS), or group D (placebo). Results. Mean total blood loss (TBL) in groups A (605.0 ml (SD 235.9)), B (790.9 ml (SD 280.7)), and C (844.8 ml (SD 248.1)) were lower than in group D (1,064.9 ml (SD 318.3), p < 0.001). We also found that compared with group D,
Aims. Rheumatoid arthritis (RA), which mainly results from fibroblast-like synoviocyte (FLS) dysfunction, is related to oxidative stress. Advanced oxidation protein products (AOPPs), which are proinflammatory mediators and a novel
Aims. The aim of this study was to use diffusion tensor imaging (DTI) to investigate changes in diffusion metrics in patients with cervical spondylotic myelopathy (CSM) up to five years after decompressive surgery. We correlated these changes with clinical outcomes as scored by the Modified Japanese Orthopedic Association (mJOA) method, Neck Disability Index (NDI), and Visual Analogue Scale (VAS). Methods. We used multi-shot, high-resolution, diffusion tensor imaging (ms-DTI) in patients with cervical spondylotic myelopathy (CSM) to investigate the change in diffusion metrics and clinical outcomes up to five years after anterior cervical interbody discectomy and fusion (ACDF). High signal intensity was identified on T2-weighted imaging, along with DTI metrics such as fractional anisotropy (FA). MJOA, NDI, and VAS scores were also collected and compared at each follow-up point. Spearman correlations identified correspondence between FA and clinical outcome scores. Results. Significant differences in mJOA scores and FA values were found between preoperative and postoperative timepoints up to two years after surgery. FA at the level of maximum cord compression (MCL) preoperatively was significantly correlated with the preoperative mJOA score. FA postoperatively was also significantly correlated with the postoperative mJOA score. There was no statistical relationship between NDI and mJOA or VAS. Conclusion. ms-DTI can detect microstructural changes in affected cord segments and reflect functional improvement. Both FA values and mJOA scores showed maximum recovery two years after surgery. The DTI metrics are significantly associated with pre- and postoperative mJOA scores. DTI metrics are a more sensitive, timely, and quantifiable surrogate for evaluating patients with CSM and a potential quantifiable
Objectives. Circulating exosomes represent novel
Aims. The aim of this study was to examine whether tourniquet use can improve perioperative blood loss, early function recovery, and pain after primary total knee arthroplasty (TKA) in the setting of multiple-dose intravenous tranexamic acid. Methods. This was a prospective, randomized clinical trial including 180 patients undergoing TKA with multiple doses of intravenous tranexamic acid. One group was treated with a tourniquet during the entire procedure, the second group received a tourniquet during cementing, and the third group did not receive a tourniquet. All patients received the same protocol of intravenous tranexamic acid (20 mg/kg) before skin incision, and three and six hours later (10 mg/kg). The primary outcome measure was perioperative blood loss. Secondary outcome measures were creatine kinase (CK), CRP, interleukin-6 (IL-6), visual analogue scale (VAS) pain score, limb swelling ratio, quadriceps strength, straight leg raising, range of motion (ROM), American Knee Society Score (KSS), and adverse events. Results. The mean total blood loss was lowest in the no-tourniquet group at 867.32 ml (SD 201.11), increased in the limited-tourniquet group at 1024.35 ml (SD 176.35), and was highest in the tourniquet group at 1,213.00 ml (SD 211.48). The hidden blood loss was lowest in the no-tourniquet group (both p < 0.001). There was less mean intraoperative blood loss in the tourniquet group (77.48 ml (SD 24.82)) than in the limited-tourniquet group (137.04 ml (SD 26.96)) and the no-tourniquet group (212.99 ml (SD 56.35); both p < 0.001). Patients in the tourniquet group showed significantly higher levels of muscle damage and inflammation
Aims. The early mortality in patients with hip fractures from bony metastases is unknown. The objectives of this study were to quantify 30- and 90-day mortality in patients with proximal femoral metastases, and to create a mortality prediction tool based on
Objectives. The aim of this study was to provide a comprehensive understanding of alterations in messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in cartilage affected by osteoarthritis (OA). Methods. The expression profiles of mRNAs, lncRNAs, and circRNAs in OA cartilage were assessed using whole-transcriptome sequencing. Bioinformatics analyses included prediction and reannotation of novel lncRNAs and circRNAs, their classification, and their placement into subgroups. Gene ontology and pathway analysis were performed to identify differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and differentially expressed circRNAs (DECs). We focused on the overlap of DEGs and targets of DELs previously identified in seven high-throughput studies. The top ten DELs were verified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in articular chondrocytes, both in vitro and in vivo. Results. In total, 739 mRNAs, 1152 lncRNAs, and 42 circRNAs were found to be differentially expressed in OA cartilage tissue. Among these, we identified 18 overlapping DEGs and targets of DELs, and the top ten DELs were screened by expression profile analysis as candidate OA-related genes. WISP2, ATF3, and CHI3L1 were significantly increased in both normal versus OA tissues and normal versus interleukin (IL)-1β-induced OA-like cell models, while ADAM12, PRELP, and ASPN were shown to be significantly decreased. Among the identified DELs, we observed higher expression of ENST00000453554 and MSTRG.99593.3, and lower expression of MSTRG.44186.2 and NONHSAT186094.1 in normal versus OA cells and tissues. Conclusion. This study revealed expression patterns of coding and noncoding RNAs in OA cartilage, which added sets of genes and noncoding RNAs to the list of candidate diagnostic
Objectives. This study looked to analyse the expression levels of microRNA-140-3p and microRNA-140-5p in synovial fluid, and their correlations to the severity of disease regarding knee osteoarthritis (OA). Methods. Knee joint synovial fluid samples were collected from 45 patients with OA of the knee (15 mild, 15 moderate and 15 severe), ten healthy volunteers, ten patients with gouty arthritis, and ten with rheumatoid arthritis. The Kellgren–Lawrence grading (KLG) was used to assess the radiological severity of knee OA, and the patients were stratified into mild (KLG < 2), moderate (KLG = 2), and severe (KLG > 2). The expression of miR-140-3p and miR-140-5p of individual samples was measured by SYBR Green quantitative polymerase chain reaction (PCR) analysis. The expression of miR-140-3p and miR-140-5p was normalised to U6 internal control using the 2. -△△CT. method. All data were processed using SPSS software. Results. Expression of both miR-140-3p and miR-140-5p was downregulated in OA synovial fluid, showing a statistical difference between the OA and non-OA group, and increased OA severity was associated with a decreased expression of miR-140-3p or miR-140-5p. The Spearman rank correlation analysis suggested that the expression of miR-140-3p or miR-140-5p was negatively correlated with OA severity. In addition, the expression of miR-140-5p was 7.4 times higher than that of miR-140-3p across all groups. Conclusion. The dysregulation of miR-140-3p and miR-140-5p in synovial fluid and their correlations with the disease severity of OA may provide an important experimental basis for OA classification, and the miR-140-3p/miR-140-5p are of great potential as
The December 2014 Hip &
Pelvis Roundup. 360 . looks at: Sports and total hips; topical tranexamic acid and blood conservation in hip replacement; blind spots and biases in hip research; no recurrence in cam lesions at two years; to drain or not to drain?; sonication and diagnosis of implant associated infection; and
The December 2014 Foot &
Ankle Roundup360 looks at: Charcot feet,
Aims. α-defensin is a
The October 2013 Research Roundup. 360 . looks at: Orthopaedics: a dangerous profession?; Freezing and
Rotator cuff tear (RCT) is the leading cause of shoulder pain, primarily associated with age-related tendon degeneration. This study aimed to elucidate the potential differential gene expressions in tendons across different age groups, and to investigate their roles in tendon degeneration. Linear regression and differential expression (DE) analyses were performed on two transcriptome profiling datasets of torn supraspinatus tendons to identify age-related genes. Subsequent functional analyses were conducted on these candidate genes to explore their potential roles in tendon ageing. Additionally, a secondary DE analysis was performed on candidate genes by comparing their expressions between lesioned and normal tendons to explore their correlations with RCTs.Aims
Methods
The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database.Aims
Methods
This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults. The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023.Aims
Methods
Elevated blood cobalt levels secondary to metal-on-metal (MoM) hip arthroplasties are a suggested risk factor for developing cardiovascular complications including cardiomyopathy. Clinical studies assessing patients with MoM hips using left ventricular ejection fraction (LVEF) have found conflicting evidence of cobalt-induced cardiomyopathy. Global longitudinal strain (GLS) is an echocardiography measurement known to be more sensitive than LVEF when diagnosing early cardiomyopathies. The extent of cardiovascular injury, as measured by GLS, in patients with elevated blood cobalt levels has not previously been examined. A total of 16 patients with documented blood cobalt ion levels above 13 µg/l (13 ppb, 221 nmol/l) were identified from a regional arthroplasty database. They were matched with eight patients awaiting hip arthroplasty. All patients underwent echocardiography, including GLS, investigating potential signs of cardiomyopathy.Aims
Methods
Aims. Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. Materials and Methods. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6). Results. At eight weeks, FiberTape alone or FiberTape-augmented autograft demonstrated increased biomechanical stability compared with autograft regarding ultimate load to failure (p = 0.035), elongation (p = 0.006), and energy absorption (p = 0.022). FiberTape-grafted samples also demonstrated increased bone mineral density in the bone tunnel (p = 0.039). Histological evaluation showed integration of all grafts in the bone tunnels by new bone formation, and limited signs of inflammation overall. A lack of prolonged inflammation in all samples was confirmed by quantification of inflammation
The diagnosis of periprosthetic joint infection (PJI) can be challenging as the symptoms are similar to other conditions, and the markers used for diagnosis have limited sensitivity and specificity. Recent research has suggested using blood cell ratios, such as platelet-to-volume ratio (PVR) and platelet-to-lymphocyte ratio (PLR), to improve diagnostic accuracy. The aim of the study was to further validate the effectiveness of PVR and PLR in diagnosing PJI. A retrospective review was conducted to assess the accuracy of different marker combinations for diagnosing chronic PJI. A total of 573 patients were included in the study, of which 124 knees and 122 hips had a diagnosis of chronic PJI. Complete blood count and synovial fluid analysis were collected. Recently published blood cell ratio cut-off points were applied to receiver operating characteristic curves for all markers and combinations. The area under the curve (AUC), sensitivity, specificity, and positive and negative predictive values were calculated.Aims
Methods
This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate.Aims
Methods
It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs.Aims
Methods
Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.Aims
Methods
The April 2023 Hip & Pelvis Roundup360 looks at: Do technical errors determine outcomes of operatively managed femoral neck fractures in younger adults?; Single-stage or two-stage revision for hip prosthetic joint infection (INFORM); Fixation better than revision in type B periprosthetic fractures of taper slip stems; Can you maximize femoral head size at the expense of liner thickness?; Plasma D-dimer for periprosthetic joint infection?; How important is in vivo oxidation?; Total hip arthroplasty for HIV patients with osteonecrosis.
Aims. We wished to quantify the extent of soft-tissue damage sustained
during minimally invasive total hip arthroplasty through the direct
anterior (DA) and direct superior (DS) approaches. Materials and Methods. In eight cadavers, the DA approach was performed on one side,
and the DS approach on the other, a single brand of uncemented hip
prosthesis was implanted by two surgeons, considered expert in their
surgical approaches. Subsequent reflection of the gluteus maximus
allowed the extent of muscle and tendon damage to be measured and
the percentage damage to each anatomical structure to be calculated. Results. The DA approach caused substantially greater damage to the gluteus
minimus muscle and tendon when compared with the DS approach (t-test,
p = 0.049 and 0.003, respectively). The tensor fascia lata and rectus
femoris muscles were damaged only in the DA approach. There was
no difference in the amount of damage to the gluteus medius muscle
and tendon, piriformis tendon, obturator internus tendon, obturator
externus tendon or quadratus femoris muscle between approaches.
The posterior soft-tissue releases of the DA approach damaged the
gluteus minimus muscle and tendon, piriformis tendon and obturator
internus tendon. Conclusion. The DS approach caused less soft-tissue damage than the DA approach.
However the clinical relevance is unknown. Further clinical outcome
studies, radiographic evaluation of component position, gait analyses
and serum
The number of revision arthroplasties being performed in the elderly is expected to rise, including revision for infection. The primary aim of this study was to measure the treatment success rate for octogenarians undergoing revision total hip arthroplasty (THA) for periprosthetic joint infection (PJI) compared to a younger cohort. Secondary outcomes were complications and mortality. Patients undergoing one- or two-stage revision of a primary THA for PJI between January 2008 and January 2021 were identified. Age, sex, BMI, American Society of Anesthesiologists grade, Charlson Comorbidity Index (CCI), McPherson systemic host grade, and causative organism were collated for all patients. PJI was classified as ‘confirmed’, ‘likely’, or ‘unlikely’ according to the 2021 European Bone and Joint Infection Society criteria. Primary outcomes were complications, reoperation, re-revision, and successful treatment of PJI. A total of 37 patients aged 80 years or older and 120 patients aged under 80 years were identified. The octogenarian group had a significantly lower BMI and significantly higher CCI and McPherson systemic host grades compared to the younger cohort.Aims
Methods
Knee osteoarthritis (OA) involves a variety of tissues in the joint. Gene expression profiles in different tissues are of great importance in order to understand OA. First, we obtained gene expression profiles of cartilage, synovium, subchondral bone, and meniscus from the Gene Expression Omnibus (GEO). Several datasets were standardized by merging and removing batch effects. Then, we used unsupervised clustering to divide OA into three subtypes. The gene ontology and pathway enrichment of three subtypes were analyzed. CIBERSORT was used to evaluate the infiltration of immune cells in different subtypes. Finally, OA-related genes were obtained from the Molecular Signatures Database for validation, and diagnostic markers were screened according to clinical characteristics. Quantitative reverse transcription polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of markers.Aims
Methods
The involvement of cyclin D1 in the proliferation of microglia, and the generation and maintenance of bone cancer pain (BCP), have not yet been clarified. We investigated the expression of microglia and cyclin D1, and the influences of cyclin D1 on pain threshold. Female Sprague Dawley (SD) rats were used to establish a rat model of BCP, and the messenger RNA (mRNA) and protein expression of ionized calcium binding adaptor molecule 1 (IBA1) and cyclin D1 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. The proliferation of spinal microglia was detected by immunohistochemistry. The pain behaviour test was assessed by quantification of spontaneous flinches, limb use, and guarding during forced ambulation, mechanical paw withdrawal threshold, and thermal paw withdrawal latency.Aims
Methods
Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of Aims
Methods
This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD). The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.Aims
Methods
Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry.Aims
Methods
Cite this article:
The December 2024 Spine Roundup360 looks at: Rostral facet joint violations in robotic- and navigation-assisted pedicle screw placement; The inhibitory effect of non-steroidal anti-inflammatory drugs and opioids on spinal fusion: an animal model;L5-S1 transforaminal lumbar interbody fusion is associated with increased revisions compared to L4-L5 TLIF at two years; Immediate versus gradual brace weaning protocols in adolescent idiopathic scoliosis: a randomized clinical trial; Effectiveness and cost-effectiveness of an individualized, progressive walking, and education intervention for the prevention of low back pain recurrence in Australia (WalkBack): a randomized controlled trial; Usefulness and limitations of intraoperative pathological diagnosis using frozen sections for spinal cord tumours; Effect of preoperative HbA1c and blood glucose level on the surgical site infection after lumbar instrumentation surgery; How good are surgeons at achieving their alignment goals?
To investigate the correlations among cytokines and regulatory T cells (T-regs) in ankylosing spondylitis (AS) patients, and their changes after anti-tumour necrosis factor-α (TNF-α) treatment. We included 72 AS patients with detailed medical records, disease activity score (Bath Ankylosing Spondylitis Disease Activity Index), functional index (Bath Ankylosing Spondylitis Functional Index), and laboratory data (interleukin (IL)-2, IL-4, IL-10, TNF-α, interferon (IFN)-γ, transforming growth factor (TGF)-β, ESR, and CRP). Their peripheral blood mononuclear cells (PBMCs) were marked with anti-CD4, anti-CD25, and anti-FoxP3 antibodies, and triple positive T cells were gated by flow cytometry as T-regs. Their correlations were calculated and the changes after anti-TNF-α therapy were compared.Aims
Methods
Patients with Aims
Methods
Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.Aims
Methods
The December 2022 Research Roundup360 looks at: Halicin is effective against
Pain is the most frequent complaint associated with osteonecrosis of the femoral head (ONFH), but the factors contributing to such pain are poorly understood. This study explored diverse demographic, clinical, radiological, psychological, and neurophysiological factors for their potential contribution to pain in patients with ONFH. This cross-sectional study was carried out according to the “STrengthening the Reporting of OBservational studies in Epidemiology” statement. Data on 19 variables were collected at a single timepoint from 250 patients with ONFH who were treated at our medical centre between July and December 2023 using validated instruments or, in the case of hip pain, a numerical rating scale. Factors associated with pain severity were identified using hierarchical multifactor linear regression.Aims
Methods
The aim of this study was to evaluate the association between chondral injury and interval from anterior cruciate ligament (ACL) tear to surgical reconstruction (ACLr). Between January 2012 and January 2022, 1,840 consecutive ACLrs were performed and included in a single-centre retrospective cohort. Exclusion criteria were partial tears, multiligament knee injuries, prior ipsilateral knee surgery, concomitant unicompartmental knee arthroplasty or high tibial osteotomy, ACL agenesis, and unknown date of tear. A total of 1,317 patients were included in the final analysis, with a median age of 29 years (interquartile range (IQR) 23 to 38). The median preoperative Tegner Activity Score (TAS) was 6 (IQR 6 to 7). Patients were categorized into four groups according to the delay to ACLr: < three months (427; 32%), three to six months (388; 29%), > six to 12 months (248; 19%), and > 12 months (254; 19%). Chondral injury was assessed during arthroscopy using the International Cartilage Regeneration and Joint Preservation Society classification, and its association with delay to ACLr was analyzed using multivariable analysis.Aims
Methods
The aim of this study was to identify factors associated with five-year cancer-related mortality in patients with limb and trunk soft-tissue sarcoma (STS) and develop and validate machine learning algorithms in order to predict five-year cancer-related mortality in these patients. Demographic, clinicopathological, and treatment variables of limb and trunk STS patients in the Surveillance, Epidemiology, and End Results Program (SEER) database from 2004 to 2017 were analyzed. Multivariable logistic regression was used to determine factors significantly associated with five-year cancer-related mortality. Various machine learning models were developed and compared using area under the curve (AUC), calibration, and decision curve analysis. The model that performed best on the SEER testing data was further assessed to determine the variables most important in its predictive capacity. This model was externally validated using our institutional dataset.Aims
Methods
Long non-coding RNAs (lncRNAs) act as crucial regulators in osteoporosis (OP). Nonetheless, the effects and potential molecular mechanism of lncRNA PCBP1 Antisense RNA 1 (PCBP1-AS1) on OP remain largely unclear. The aim of this study was to explore the role of lncRNA PCBP1-AS1 in the pathogenesis of OP. Using quantitative real-time polymerase chain reaction (qRT-PCR), osteogenesis-related genes (alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2)), PCBP1-AS1, microRNA (miR)-126-5p, group I Pak family member p21-activated kinase 2 (PAK2), and their relative expression levels were determined. Western blotting was used to examine the expression of PAK2 protein. Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. To examine the osteogenic differentiation, Alizarin red along with ALP staining was used. RNA immunoprecipitation assay and bioinformatics analysis, as well as a dual-luciferase reporter, were used to study the association between PCBP1-AS1, PAK2, and miR-126-5p.Aims
Methods
Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay.Aims
Methods
To explore the synovial expression of mucin 1 (MUC1) and its role in rheumatoid arthritis (RA), as well as the possible downstream mechanisms. Patients with qualified synovium samples were recruited from a RA cohort. Synovium from patients diagnosed as non-inflammatory orthopaedic arthropathies was obtained as control. The expression and localization of MUC1 in synovium and fibroblast-like synoviocytes were assessed by immunohistochemistry and immunofluorescence. Small interfering RNA and MUC1 inhibitor GO-203 were adopted for inhibition of MUC1. Lysophosphatidic acid (LPA) was used as an activator of Rho-associated pathway. Expression of inflammatory cytokines, cell migration, and invasion were evaluated using quantitative real-time polymerase chain reaction (PCR) and Transwell chamber assay.Aims
Methods
This study aimed to assess the risk of acute kidney injury (AKI) associated with combined intravenous (IV) and topical antibiotic therapy in patients undergoing treatment for periprosthetic joint infections (PJIs) following total knee arthroplasty (TKA), utilizing the Kidney Disease: Improving Global Outcomes (KDIGO) criteria for classification. We conducted a retrospective analysis of 162 knees (162 patients) that received treatment for PJI post-TKA with combined IV and topical antibiotic infusions at a single academic hospital from 1 January 2010 to 31 December 2022. The incidence of AKI was evaluated using the KDIGO criteria, focussing on the identification of significant predictors and the temporal pattern of AKI development.Aims
Methods
To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis. Empty adenovirus (EP) and a Aims
Methods
To explore key stakeholder views around feasibility and acceptability of trials seeking to prevent post-traumatic osteoarthritis (PTOA) following knee injury, and provide guidance for next steps in PTOA trial design. Healthcare professionals, clinicians, and/or researchers (HCP/Rs) were surveyed, and the data were presented at a congress workshop. A second and related survey was then developed for people with joint damage caused by knee injury and/or osteoarthritis (PJDs), who were approached by a UK Charity newsletter or Oxford involvement registry. Anonymized data were collected and analyzed in Qualtrics.Aims
Methods
To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration. The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm2, 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens.Aims
Methods
Initial treatment of traumatic spinal cord injury remains as controversial in 2023 as it was in the early 19th century, when Sir Astley Cooper and Sir Charles Bell debated the merits or otherwise of surgery to relieve cord compression. There has been a lack of high-class evidence for early surgery, despite which expeditious intervention has become the surgical norm. This evidence deficit has been progressively addressed in the last decade and more modern statistical methods have been used to clarify some of the issues, which is demonstrated by the results of the SCI-POEM trial. However, there has never been a properly conducted trial of surgery versus active conservative care. As a result, it is still not known whether early surgery or active physiological management of the unstable injured spinal cord offers the better chance for recovery. Surgeons who care for patients with traumatic spinal cord injuries in the acute setting should be aware of the arguments on all sides of the debate, a summary of which this annotation presents. Cite this article:
Mendelian randomization (MR) is considered to overcome the bias of observational studies, but there is no current meta-analysis of MR studies on rheumatoid arthritis (RA). The purpose of this study was to summarize the relationship between potential pathogenic factors and RA risk based on existing MR studies. PubMed, Web of Science, and Embase were searched for MR studies on influencing factors in relation to RA up to October 2022. Meta-analyses of MR studies assessing correlations between various potential pathogenic factors and RA were conducted. Random-effect and fixed-effect models were used to synthesize the odds ratios of various pathogenic factors and RA. The quality of the study was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines.Aims
Methods
Aims. The diagnosis of periprosthetic joint infection can be difficult
due to the high rate of culture-negative infections. The aim of
this study was to assess the use of next-generation sequencing for
detecting organisms in synovial fluid. Materials and Methods. In this prospective, single-blinded study, 86 anonymized samples
of synovial fluid were obtained from patients undergoing aspiration
of the hip or knee as part of the investigation of a periprosthetic
infection. A panel of synovial fluid tests, including levels of
C-reactive protein, human neutrophil elastase, total neutrophil
count, alpha-defensin, and culture were performed prior to next-generation
sequencing. Results. Of these 86 samples, 30 were alpha-defensin-positive and culture-positive
(Group I), 24 were alpha-defensin-positive and culture-negative
(Group II) and 32 were alpha-defensin-negative and culture-negative
(Group III). Next-generation sequencing was concordant with 25 results
for Group I. In four of these, it detected antibiotic resistant bacteria
whereas culture did not. In another four samples with relatively
low levels of inflammatory
To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism. In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.Aims
Methods
This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.Aims
Methods
The preventive effects of bisphosphonates on articular cartilage in non-arthritic joints are unclear. This study aimed to investigate the effects of oral bisphosphonates on the rate of joint space narrowing in the non-arthritic hip. We retrospectively reviewed standing whole-leg radiographs from patients who underwent knee arthroplasties from 2012 to 2020 at our institute. Patients with previous hip surgery, Kellgren–Lawrence grade ≥ II hip osteoarthritis, hip dysplasia, or rheumatoid arthritis were excluded. The rate of hip joint space narrowing was measured in 398 patients (796 hips), and the effects of the use of bisphosphonates were examined using the multivariate regression model and the propensity score matching (1:2) model.Aims
Methods
Treatment outcomes for methicillin-resistant Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation.Aims
Methods
The association of auraptene (AUR), a 7-geranyloxycoumarin, on osteoporosis and its potential pathway was predicted by network pharmacology and confirmed in experimental osteoporotic mice. The network of AUR was constructed and a potential pathway predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms enrichment. Female ovariectomized (OVX) Institute of Cancer Research mice were intraperitoneally injected with 0.01, 0.1, and 1 mM AUR for four weeks. The bone mineral density (BMD) level was measured by dual-energy X-ray absorptiometry. The bone microstructure was determined by histomorphological changes in the femora. In addition, biochemical analysis of the serum and assessment of the messenger RNA (mRNA) levels of osteoclastic markers were performed.Aims
Methods
The decrease in the number of satellite cells (SCs), contributing to myofibre formation and reconstitution, and their proliferative capacity, leads to muscle loss, a condition known as sarcopenia. Resistance training can prevent muscle loss; however, the underlying mechanisms of resistance training effects on SCs are not well understood. We therefore conducted a comprehensive transcriptome analysis of SCs in a mouse model. We compared the differentially expressed genes of SCs in young mice (eight weeks old), middle-aged (48-week-old) mice with resistance training intervention (MID+ T), and mice without exercise (MID) using next-generation sequencing and bioinformatics.Aims
Methods
Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis (OA). The gut microbiome is shown to be involved in OA. However, the effect of exercise on gut microbiome in PTOA remains elusive. A total of 18 eight-week Sprague-Dawley rats were assigned into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). PTOA model was induced by transection of the anterior cruciate ligament (ACLT) and the destabilization of the medial meniscus (DMM). Treadmill-walking (15 m/min, 30 min/d, five days/week for eight weeks) was employed in the PTOA/TW group. The response of cartilage, subchondral bone, serology, and gut microbiome and their correlations were assessed.Aims
Methods
We aimed to evaluate the utility of 68Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with 99mTc-methylene bisphosphonates (99mTc-MDP) bone scan. We studied 39 patients with suspected PJI or AL. These patients underwent 68Ga-citrate PET/CT, 99mTc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations.Aims
Methods
This study evaluated the definitions developed by the European Bone and Joint Infection Society (EBJIS) 2021, the International Consensus Meeting (ICM) 2018, and the Infectious Diseases Society of America (IDSA) 2013, for the diagnosis of periprosthetic joint infection (PJI). In this single-centre, retrospective analysis of prospectively collected data, patients with an indicated revision surgery after a total hip or knee arthroplasty were included between 2015 and 2020. A standardized diagnostic workup was performed, identifying the components of the EBJIS, ICM, and IDSA criteria in each patient.Aims
Methods
We assessed the value of the Clinical Frailty Scale (CFS) in the prediction of adverse outcome after hip fracture. Of 1,577 consecutive patients aged > 65 years with a fragility hip fracture admitted to one institution, for whom there were complete data, 1,255 (72%) were studied. Clinicians assigned CFS scores on admission. Audit personnel routinely prospectively completed the Standardised Audit of Hip Fracture in Europe form, including the following outcomes: 30-day survival; in-hospital complications; length of acute hospital stay; and new institutionalization. The relationship between the CFS scores and outcomes was examined graphically and the visual interpretations were tested statistically. The predictive values of the CFS and Nottingham Hip Fracture Score (NHFS) to predict 30-day mortality were compared using receiver operating characteristic area under the curve (AUC) analysis.Aims
Methods